4,680 research outputs found

    The MRC trial of assessment and management of older people in the community: objectives, design and interventions [ISRCTN23494848].

    Get PDF
    BACKGROUND: The benefit of regular multidimensional assessment of older people remains controversial. The majority of trials have been too small to produce adequate evidence to inform policy. Despite the lack of a firm evidence base, UK primary care practitioners (general practitioners) are required to offer an annual health check to patients aged 75 years and over. DESIGN: Cluster-randomised factorial trial in primary care comparing a package of assessments (i) universal versus targeted assessment and (ii) management by the primary care team (PC) or a multidisciplinary geriatric assessment team (GM). The unit of randomization is the general practice. METHODS: Older people aged 75 and over eligible for the over 75s health check and excluding those in nursing homes or terminally ill were invited to participate. All participants receive a brief assessment covering all areas of the over 75s check. In the universal arm all participants also receive a detailed health and social assessment by a study nurse while in the targeted arm only participants with a pre-determined number and range of problems at the brief assessment go on to have the detailed assessment. The study nurse follows a standard protocol based on results and responses in the detailed assessment to make referrals to (i) the randomised management team (PC or GM) (ii) other medical services, health care workers or agencies (iii) emergency referrals to the GP. The main outcomes are mortality, hospital and institutional admissions and quality of life. 106 practices and 33,000 older people have been recruited to the trial

    Predicting wind turbine blade loads using vorticity transport and RANS methodologies

    Get PDF
    Two computational methods, one based on the solution of the vorticity transport equation, and a second based on the solution of the Reynolds-Averaged Navier-Stokes equations, have been used to simulate the aerodynamic performance of a horizontal axis wind turbine. Comparisons have been made against data obtained during Phase VI of the NREL Unsteady Aerodynamics Experimental and against existing numerical data for a range of wind conditions. The Reynolds-Averaged Navier-Stokes method demonstrates the potential to predict accurately the flow around the blades and the distribution of aerodynamic loads developed on them. The Vorticity Transport Model possesses a considerable advantage in those situtations where the accurate, but computationally efficient, modelling of the structure of the wake and the associated induced velocity is critical, but where the prediction of blade loads can be achieved with sufficient accuracy using a lifting-line model augmented by incorporating a semi-empirical stall delay model. The largest benefits can be extracted when the two methods are used to complement each other in order to understand better the physical mechanisms governing the aerodynamic performance of wind turbines

    Observations of a solar flare and filament eruption in Lyman <span class='mathrm'>α</span> and X-rays

    Get PDF
    &lt;p&gt;&lt;b&gt;Context&lt;/b&gt;: L&#945; is a strong chromospheric emission line, which has been relatively rarely observed in flares. The Transition Region and Coronal Explorer (TRACE) has a broad “Lyman &#945;” channel centered at 1216 Å used primarily at the beginning of the mission. A small number of flares were observed in this channel.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Aims&lt;/b&gt;: We aim to characterise the appearance and behaviour of a flare and filament ejection which occurred on 8th September 1999 and was observed by TRACE in L&#945;, as well as by the Yohkoh Soft and Hard X-ray telescopes. We explore the flare energetics and its spatial and temporal evolution. We have in mind the fact that the L&#945; line is a target for the Extreme Ultraviolet Imaging telescope (EUI) which has been selected for the Solar Orbiter mission, as well as the LYOT telescope on the proposed SMESE mission.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods&lt;/b&gt;: We use imaging data from the TRACE 1216 Å, 1600 Å and 171 Å channels, and the Yohkoh hard and soft X-ray telescopes. A correction is applied to the TRACE data to obtain a better estimate of the pure L&#945; signature. The L&#945;  power is obtained from a knowledge of the TRACE response function, and the flare electron energy budget is estimated by interpreting Yohkoh/HXT emission in the context of the collisional thick target model.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results&lt;/b&gt;: We find that the L&#945;  flare is characterised by strong, compact footpoints (smaller than the UV ribbons) which correlate well with HXR footpoints. The L&#945; power radiated by the flare footpoints can be estimated, and is found to be on the order of 1026 erg s-1 at the peak. This is less than 10% of the power inferred for the electrons which generate the co-spatial HXR emission, and can thus readily be provided by them. The early stages of the filament eruption that accompany the flare are also visible, and show a diffuse, roughly circular spreading sheet-like morphology, with embedded denser blobs.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions&lt;/b&gt;: On the basis of this observation, we conclude that flare and filament observations in the L&#945; line with the planned EUI and LYOT telescopes will provide valuable insight into solar flare evolution and energetics, especially when accompanied by HXR imaging and spectroscopy.&lt;/p&gt

    Structure formation in active networks

    Full text link
    Structure formation and constant reorganization of the actin cytoskeleton are key requirements for the function of living cells. Here we show that a minimal reconstituted system consisting of actin filaments, crosslinking molecules and molecular-motor filaments exhibits a generic mechanism of structure formation, characterized by a broad distribution of cluster sizes. We demonstrate that the growth of the structures depends on the intricate balance between crosslinker-induced stabilization and simultaneous destabilization by molecular motors, a mechanism analogous to nucleation and growth in passive systems. We also show that the intricate interplay between force generation, coarsening and connectivity is responsible for the highly dynamic process of structure formation in this heterogeneous active gel, and that these competing mechanisms result in anomalous transport, reminiscent of intracellular dynamics

    Photochemically re-bridging disulfide bonds and the discovery of a thiomaleimide mediated photodecarboxylation of C-terminal cysteines

    Get PDF
    Described in this work is a novel method for photochemically manipulating peptides and proteins via the installation of cysteine-selective photoactive tags. Thiomaleimides, generated simply by the addition of bromomaleimides to reduced disulfide bonds, undergo [2 + 2] photocycloadditions to reconnect the crosslink between the two cysteine residues. This methodology is demonstrated to enable photoactivation of a peptide by macrocyclisation, and reconnection of the heavy and light chains in an antibody fragment to form thiol stable conjugates. Finally we report on an intriguing thiomaleimide mediated photochemical decarboxylation of C-terminal cysteines, discovered during this study

    Prediction of unsteady blade loads of a wind turbine using RANS and vorticity transport methodologies

    Get PDF
    Numerical simulations of the NREL phase VI wind turbine operating in yawed conditions have been performed using two computational methods; one based on the solution of the Reynolds-averaged Navier-Stokes equations (RANS) using unstructured overset meshes and one known as the Vorticity Transport Model (VTM) that is based on the solution of the vorticity transport equation. The effect of the hub that was present during the NREL experiments was investigated by modeling the hub in the RANS simulations. It was found that the hub influenced the loading significantly at the inboard part of the blade when the blade passed through the wake that was developed by the hub. Both the RANS and VTM codes are able to predict well the unsteady and time-averaged aerodynamic loadings on the wind turbine blades at low wind speeds. At high wind speeds, leading-edge flow separation and strong radial flow are observed on the suction surface of the blades, when the blades are at the retreating side of the rotor. Both the RANS and VTM codes provide less accurate predictions of the blade loads. However, at the advancing side of the rotor, the flow is mostly attached to the surface of the blade, and both the RANS and VTM predictions of the blade loads are in good agreement with the measured data

    On the Determination of the Gluon Density of the Proton from Heavy-Flavour Production at HERA

    Full text link
    Using a recent next-to-leading-order calculation of the photoproduction double differential cross section for heavy quarks, we study the possibility of extracting the gluon density of the proton from heavy-quark photoproduction data. We discuss the theoretical uncertainties connected with this method, and we conclude that they are well under control in a wide xx domain.Comment: CERN-TH.6864/93, GeF-TH-12/93. Latex, 5 topdrawer figures appended at the en
    corecore